A1.13

Computational Statistics and Statistical Modelling | Part II, 2001

(i) Assume that the nn-dimensional observation vector YY may be written as

Y=Xβ+ϵY=X \beta+\epsilon

where XX is a given n×pn \times p matrix of rankp,β\operatorname{rank} p, \beta is an unknown vector, and

ϵNn(0,σ2I)\epsilon \sim N_{n}\left(0, \sigma^{2} I\right)

Let Q(β)=(YXβ)T(YXβ)Q(\beta)=(Y-X \beta)^{T}(Y-X \beta). Find β^\widehat{\beta}, the least-squares estimator of β\beta, and show that

Q(β^)=YT(IH)YQ(\widehat{\beta})=Y^{T}(I-H) Y

where HH is a matrix that you should define.

(ii) Show that iHii=p\sum_{i} H_{i i}=p. Show further for the special case of

Yi=β1+β2xi+β3zi+ϵi,1inY_{i}=\beta_{1}+\beta_{2} x_{i}+\beta_{3} z_{i}+\epsilon_{i}, \quad 1 \leqslant i \leqslant n

where Σxi=0,Σzi=0\Sigma x_{i}=0, \Sigma z_{i}=0, that

H=1n11T+axxT+b(xzT+zxT)+czzT;H=\frac{1}{n} \mathbf{1 1}{ }^{T}+a x x^{T}+b\left(x z^{T}+z x^{T}\right)+c z z^{T} ;

here, 1\mathbf{1} is a vector of which every element is one, and a,b,ca, b, c, are constants that you should derive.

Hence show that, if Y^=Xβ^\widehat{Y}=X \widehat{\beta} is the vector of fitted values, then

1σ2var(Y^i)=1n+axi2+2bxizi+czi2,1in.\frac{1}{\sigma^{2}} \operatorname{var}\left(\widehat{Y}_{i}\right)=\frac{1}{n}+a x_{i}^{2}+2 b x_{i} z_{i}+c z_{i}^{2}, \quad 1 \leqslant i \leqslant n .

Typos? Please submit corrections to this page on GitHub.