B2.17

Partial Differential Equations | Part II, 2001

Define the Schwartz space S(R)\mathcal{S}(\mathbb{R}) and the corresponding space of tempered distributions S(R)\mathcal{S}^{\prime}(\mathbb{R}).

Use the Fourier transform to give an integral formula for the solution of the equation

d2udx2+dudx+u=f-\frac{d^{2} u}{d x^{2}}+\frac{d u}{d x}+u=f

for fS(R)f \in \mathcal{S}(\mathbb{R}). Prove that your solution lies in S(R)\mathcal{S}(\mathbb{R}). Is your formula the unique solution to ()(*) in the Schwartz space?

Deduce from this formula an integral expression for the fundamental solution of the operator P=d2dx2+ddx+1P=-\frac{d^{2}}{d x^{2}}+\frac{d}{d x}+1.

Let KK be the function:

K(x)={15e(51)x/2 for x015e(5+1)x/2 for x0K(x)= \begin{cases}\frac{1}{\sqrt{5}} e^{-(\sqrt{5}-1) x / 2} & \text { for } x \geqslant 0 \\ \frac{1}{\sqrt{5}} e^{(\sqrt{5}+1) x / 2} & \text { for } x \leqslant 0\end{cases}

Using the definition of distributional derivatives verify that this function is a fundamental solution for PP.

Typos? Please submit corrections to this page on GitHub.