B3.13

Applied Probability | Part II, 2001

Consider an M/G/1M / G / 1 queue with arrival rate λ\lambda and traffic intensity less

than 1. Prove that the moment-generating function of a typical busy period, MB(θ)M_{B}(\theta), satisfies

MB(θ)=MS(θλ+λMB(θ)),M_{B}(\theta)=M_{S}\left(\theta-\lambda+\lambda M_{B}(\theta)\right),

where MS(θ)M_{S}(\theta) is the moment-generating function of a typical service time.

If service times are exponentially distributed with parameter μ>λ\mu>\lambda, show that

MB(θ)=λ+μθ{(λ+μθ)24λμ}1/22λM_{B}(\theta)=\frac{\lambda+\mu-\theta-\left\{(\lambda+\mu-\theta)^{2}-4 \lambda \mu\right\}^{1 / 2}}{2 \lambda}

for all sufficiently small but positive values of θ\theta.

Typos? Please submit corrections to this page on GitHub.