A3.7

Geometry of Surfaces | Part II, 2001

(i) Give the definition of the surface area of a parametrized surface in R3\mathbf{R}^{3} and show that it does not depend on the parametrization.

(ii) Let φ(u)>0\varphi(u)>0 be a differentiable function of uu. Consider the surface of revolution:

(uv)f(u,v)=(φ(u)cos(v)φ(u)sin(v)u)\left(\begin{array}{l} u \\ v \end{array}\right) \mapsto f(u, v)=\left(\begin{array}{c} \varphi(u) \cos (v) \\ \varphi(u) \sin (v) \\ u \end{array}\right)

Find a formula for each of the following: (a) The first fundamental form. (b) The unit normal. (c) The second fundamental form. (d) The Gaussian curvature.

Typos? Please submit corrections to this page on GitHub.