Paper 2, Section I, H

Optimization | Part IB, 2019

State the Lagrange sufficiency theorem.

Find the maximum of log(xyz)\log (x y z) over x,y,z>0x, y, z>0 subject to the constraint

x2+y2+z2=1x^{2}+y^{2}+z^{2}=1

using Lagrange multipliers. Carefully justify why your solution is in fact the maximum.

Find the maximum of log(xyz)\log (x y z) over x,y,z>0x, y, z>0 subject to the constraint

x2+y2+z21x^{2}+y^{2}+z^{2} \leqslant 1

Typos? Please submit corrections to this page on GitHub.