Paper 3, Section II, C

Numerical Analysis | Part IB, 2019

(a) Let w(x)w(x) be a positive weight function on the interval [a,b][a, b]. Show that

f,g=abf(x)g(x)w(x)dx\langle f, g\rangle=\int_{a}^{b} f(x) g(x) w(x) d x

defines an inner product on C[a,b]C[a, b].

(b) Consider the sequence of polynomials pn(x)p_{n}(x) defined by the three-term recurrence relation

pn+1(x)=(xαn)pn(x)βnpn1(x),n=1,2,p_{n+1}(x)=\left(x-\alpha_{n}\right) p_{n}(x)-\beta_{n} p_{n-1}(x), \quad n=1,2, \ldots

where

p0(x)=1,p1(x)=xα0,p_{0}(x)=1, \quad p_{1}(x)=x-\alpha_{0},

and the coefficients αn\alpha_{n} (for n0)\left.n \geqslant 0\right) and βn\beta_{n} (for n1)\left.n \geqslant 1\right) are given by

αn=pn,xpnpn,pn,βn=pn,pnpn1,pn1\alpha_{n}=\frac{\left\langle p_{n}, x p_{n}\right\rangle}{\left\langle p_{n}, p_{n}\right\rangle}, \quad \beta_{n}=\frac{\left\langle p_{n}, p_{n}\right\rangle}{\left\langle p_{n-1}, p_{n-1}\right\rangle}

Prove that this defines a sequence of monic orthogonal polynomials on [a,b][a, b].

(c) The Hermite polynomials Hen(x)H e_{n}(x) are orthogonal on the interval (,)(-\infty, \infty) with weight function ex2/2e^{-x^{2} / 2}. Given that

Hen(x)=(1)nex2/2dndxn(ex2/2)H e_{n}(x)=(-1)^{n} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2} / 2}\right)

deduce that the Hermite polynomials satisfy a relation of the form ()(*) with αn=0\alpha_{n}=0 and βn=n\beta_{n}=n. Show that Hen,Hen=n!2π\left\langle H e_{n}, H e_{n}\right\rangle=n ! \sqrt{2 \pi}.

(d) State, without proof, how the properties of the Hermite polynomial HeN(x)\operatorname{He}_{N}(x), for some positive integer NN, can be used to estimate the integral

f(x)ex2/2dx\int_{-\infty}^{\infty} f(x) e^{-x^{2} / 2} d x

where f(x)f(x) is a given function, by the method of Gaussian quadrature. For which polynomials is the quadrature formula exact?

Typos? Please submit corrections to this page on GitHub.