Paper 1, Section II, G

Metric and Topological Spaces | Part IB, 2019

Consider the set of sequences of integers

X={(x1,x2,)xnZ for all n}X=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{n} \in \mathbb{Z} \text { for all } n\right\}

Define

nmin((xn),(yn))={xn=yn for all nmin{nxnyn} otherwise n_{\min }\left(\left(x_{n}\right),\left(y_{n}\right)\right)= \begin{cases}\infty & x_{n}=y_{n} \text { for all } n \\ \min \left\{n \mid x_{n} \neq y_{n}\right\} & \text { otherwise }\end{cases}

for two sequences (xn),(yn)X\left(x_{n}\right),\left(y_{n}\right) \in X. Let

d((xn),(yn))=2nmin((xn),(yn))d\left(\left(x_{n}\right),\left(y_{n}\right)\right)=2^{-n_{\min }\left(\left(x_{n}\right),\left(y_{n}\right)\right)}

where, as usual, we adopt the convention that 2=02^{-\infty}=0.

(a) Prove that dd defines a metric on XX.

(b) What does it mean for a metric space to be complete? Prove that (X,d)(X, d) is complete.

(c) Is (X,d)(X, d) path connected? Justify your answer.

Typos? Please submit corrections to this page on GitHub.