Paper 3, Section II, D

Methods | Part IB, 2019

By differentiating the expression ψ(t)=H(t)sin(αt)/α\psi(t)=H(t) \sin (\alpha t) / \alpha, where α\alpha is a constant and H(t)H(t) is the Heaviside step function, show that

d2ψdt2+α2ψ=δ(t)\frac{d^{2} \psi}{d t^{2}}+\alpha^{2} \psi=\delta(t)

where δ(t)\delta(t) is the Dirac δ\delta-function.

Hence, by taking a Fourier transform with respect to the spatial variables only, derive the retarded Green's function for the wave operator t2c22\partial_{t}^{2}-c^{2} \nabla^{2} in three spatial dimensions.

[You may use that

12πR3eik(xy)sin(kct)kcd3k=icxyeikxysin(kct)dk\frac{1}{2 \pi} \int_{\mathbb{R}^{3}} e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} \frac{\sin (k c t)}{k c} d^{3} k=-\frac{i}{c|\mathbf{x}-\mathbf{y}|} \int_{-\infty}^{\infty} e^{i k|\mathbf{x}-\mathbf{y}|} \sin (k c t) d k

without proof.]

Thus show that the solution to the homogeneous wave equation t2uc22u=0\partial_{t}^{2} u-c^{2} \nabla^{2} u=0, subject to the initial conditions u(x,0)=0u(\mathbf{x}, 0)=0 and tu(x,0)=f(x)\partial_{t} u(\mathbf{x}, 0)=f(\mathbf{x}), may be expressed as

u(x,t)=ftu(\mathbf{x}, t)=\langle f\rangle t

where f\langle f\rangle is the average value of ff on a sphere of radius ctc t centred on x\mathbf{x}. Interpret this result.

Typos? Please submit corrections to this page on GitHub.