Paper 1, Section II, B

Methods | Part IB, 2019

The Bessel functions Jn(r)(n0)J_{n}(r)(n \geqslant 0) can be defined by the expansion

eircosθ=J0(r)+2n=1inJn(r)cosnθe^{i r \cos \theta}=J_{0}(r)+2 \sum_{n=1}^{\infty} i^{n} J_{n}(r) \cos n \theta

By using Cartesian coordinates x=rcosθ,y=rsinθx=r \cos \theta, y=r \sin \theta, or otherwise, show that

(2+1)eircosθ=0\left(\nabla^{2}+1\right) e^{i r \cos \theta}=0

Deduce that Jn(r)J_{n}(r) satisfies Bessel's equation

(r2d2dr2+rddr(n2r2))Jn(r)=0\left(r^{2} \frac{d^{2}}{d r^{2}}+r \frac{d}{d r}-\left(n^{2}-r^{2}\right)\right) J_{n}(r)=0

By expanding the left-hand side of ()(*) up to cubic order in rr, derive the series expansions of J0(r),J1(r),J2(r)J_{0}(r), J_{1}(r), J_{2}(r) and J3(r)J_{3}(r) up to this order.

Typos? Please submit corrections to this page on GitHub.