Paper 1, Section II, F

Linear Algebra | Part IB, 2019

What is the adjugate adj (A)(A) of an n×nn \times n matrix AA ? How is it related to det(A)?\operatorname{det}(A) ?

(a) Define matrices B0,B1,,Bn1B_{0}, B_{1}, \ldots, B_{n-1} by

adj(tIA)=i=0n1Bitn1i\operatorname{adj}(t I-A)=\sum_{i=0}^{n-1} B_{i} t^{n-1-i}

and scalars c0,c1,,cnc_{0}, c_{1}, \ldots, c_{n} by

det(tIA)=j=0ncjtnj\operatorname{det}(t I-A)=\sum_{j=0}^{n} c_{j} t^{n-j}

Find a recursion for the matrices BiB_{i} in terms of AA and the cjc_{j} 's.

(b) By considering the partial derivatives of the multivariable polynomial

p(t1,t2,,tn)=det((t1000t2000tn)A)p\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\operatorname{det}\left(\left(\begin{array}{cccc} t_{1} & 0 & \cdots & 0 \\ 0 & t_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & t_{n} \end{array}\right)-A\right)

show that

ddt(det(tIA))=Tr(adj(tIA))\frac{d}{d t}(\operatorname{det}(t I-A))=\operatorname{Tr}(\operatorname{adj}(t I-A))

(c) Hence show that the cjc_{j} 's may be expressed in terms of Tr(A),Tr(A2),,Tr(An)\operatorname{Tr}(A), \operatorname{Tr}\left(A^{2}\right), \ldots, \operatorname{Tr}\left(A^{n}\right).

Typos? Please submit corrections to this page on GitHub.