Paper 1, Section I, ELinear Algebra | Part IB, 2018State the Rank-Nullity Theorem.If α:V→W\alpha: V \rightarrow Wα:V→W and β:W→X\beta: W \rightarrow Xβ:W→X are linear maps and WWW is finite dimensional, show thatdimIm(α)=dimIm(βα)+dim(Im(α)∩Ker(β))\operatorname{dim} \operatorname{Im}(\alpha)=\operatorname{dim} \operatorname{Im}(\beta \alpha)+\operatorname{dim}(\operatorname{Im}(\alpha) \cap \operatorname{Ker}(\beta))dimIm(α)=dimIm(βα)+dim(Im(α)∩Ker(β))If γ:U→V\gamma: U \rightarrow Vγ:U→V is another linear map, show thatdimIm(βα)+dimIm(αγ)⩽dimIm(α)+dimIm(βαγ)\operatorname{dim} \operatorname{Im}(\beta \alpha)+\operatorname{dim} \operatorname{Im}(\alpha \gamma) \leqslant \operatorname{dim} \operatorname{Im}(\alpha)+\operatorname{dim} \operatorname{Im}(\beta \alpha \gamma)dimIm(βα)+dimIm(αγ)⩽dimIm(α)+dimIm(βαγ)Typos? Please submit corrections to this page on GitHub.