Paper 2, Section II, G
For any matrix
the corresponding Möbius transformation is
which acts on the upper half-plane , equipped with the hyperbolic metric .
(a) Assuming that , prove that is conjugate in to a diagonal matrix . Determine the relationship between and .
(b) For a diagonal matrix with , prove that
for all not on the imaginary axis.
(c) Assume now that . Prove that fixes a point in .
(d) Give an example of a matrix in that does not preserve any point or hyperbolic line in . Justify your answer.
Typos? Please submit corrections to this page on GitHub.