Paper 1, Section II, C
Starting from the Lorentz force law acting on a current distribution obeying , show that the energy of a magnetic dipole in the presence of a time independent magnetic field is
State clearly any approximations you make.
[You may use without proof the fact that
for any constant vector , and the identity
which holds when is constant.]
A beam of slowly moving, randomly oriented magnetic dipoles enters a region where the magnetic field is
with and constants. By considering their energy, briefly describe what happens to those dipoles that are parallel to, and those that are anti-parallel to the direction of .
Typos? Please submit corrections to this page on GitHub.