Paper 1, Section II, A

Complex Analysis or Complex Methods | Part IB, 2018

(a) Let CC be a rectangular contour with vertices at ±R+πi\pm R+\pi i and ±Rπi\pm R-\pi i for some R>0R>0 taken in the anticlockwise direction. By considering

limRCeiz2/4πez/2ez/2dz\lim _{R \rightarrow \infty} \oint_{C} \frac{e^{i z^{2} / 4 \pi}}{e^{z / 2}-e^{-z / 2}} d z

show that

limRRReix2/4πdx=2πeπi/4\lim _{R \rightarrow \infty} \int_{-R}^{R} e^{i x^{2} / 4 \pi} d x=2 \pi e^{\pi i / 4}

(b) By using a semi-circular contour in the upper half plane, calculate

0xsin(πx)x2+a2dx\int_{0}^{\infty} \frac{x \sin (\pi x)}{x^{2}+a^{2}} d x

for a>0a>0.

[You may use Jordan's Lemma without proof.]

Typos? Please submit corrections to this page on GitHub.