Paper 3, Section II, G
What is a contraction map on a metric space ? State and prove the contraction mapping theorem.
Let be a complete non-empty metric space. Show that if is a map for which some iterate is a contraction map, then has a unique fixed point. Show that itself need not be a contraction map.
Let be the function
Show that has a unique fixed point.
Typos? Please submit corrections to this page on GitHub.