Paper 1, Section II, 10E
(a) State Sylow's theorem.
(b) Let be a finite simple non-abelian group. Let be a prime number. Show that if divides , then divides where is the number of Sylow -subgroups of .
(c) Let be a group of order 48 . Show that is not simple. Find an example of which has no normal Sylow 2-subgroup.
Typos? Please submit corrections to this page on GitHub.