Paper 1, Section II, A

Complex Analysis or Complex Methods | Part IB, 2017

(a) Let f(z)f(z) be defined on the complex plane such that zf(z)0z f(z) \rightarrow 0 as z|z| \rightarrow \infty and f(z)f(z) is analytic on an open set containing Im(z)c\operatorname{Im}(z) \geqslant-c, where cc is a positive real constant.

Let C1C_{1} be the horizontal contour running from ic-\infty-i c to +ic+\infty-i c and let

F(λ)=12πiC1f(z)zλdzF(\lambda)=\frac{1}{2 \pi i} \int_{C_{1}} \frac{f(z)}{z-\lambda} d z

By evaluating the integral, show that F(λ)F(\lambda) is analytic for Im(λ)>c\operatorname{Im}(\lambda)>-c.

(b) Let g(z)g(z) be defined on the complex plane such that zg(z)0z g(z) \rightarrow 0 as z|z| \rightarrow \infty with Im(z)c\operatorname{Im}(z) \geqslant-c. Suppose g(z)g(z) is analytic at all points except z=α+z=\alpha_{+}and z=αz=\alpha_{-}which are simple poles with Im(α+)>c\operatorname{Im}\left(\alpha_{+}\right)>c and Im(α)<c\operatorname{Im}\left(\alpha_{-}\right)<-c.

Let C2C_{2} be the horizontal contour running from +ic-\infty+i c to ++ic+\infty+i c, and let

H(λ)=12πiC1g(z)zλdzJ(λ)=12πiC2g(z)zλdz.\begin{gathered} H(\lambda)=\frac{1}{2 \pi i} \int_{C_{1}} \frac{g(z)}{z-\lambda} d z \\ J(\lambda)=-\frac{1}{2 \pi i} \int_{C_{2}} \frac{g(z)}{z-\lambda} d z . \end{gathered}

(i) Show that H(λ)H(\lambda) is analytic for Im(λ)>c\operatorname{Im}(\lambda)>-c.

(ii) Show that J(λ)J(\lambda) is analytic for Im(λ)<c\operatorname{Im}(\lambda)<c.

(iii) Show that if c<Im(λ)<c-c<\operatorname{Im}(\lambda)<c then H(λ)+J(λ)=g(λ)H(\lambda)+J(\lambda)=g(\lambda).

[You should be careful to make sure you consider all points in the required regions.]

Typos? Please submit corrections to this page on GitHub.