Paper 3, Section II, D

Numerical Analysis | Part IB, 2015

Define the QR factorization of an m×nm \times n matrix AA. Explain how it can be used to solve the least squares problem of finding the vector xRnx^{*} \in \mathbb{R}^{n} which minimises Axb\|\mathrm{A} x-b\|, where bRm,m>nb \in \mathbb{R}^{m}, m>n, and \|\cdot\| is the Euclidean norm.

Explain how to construct QQ and RR by the Gram-Schmidt procedure. Why is this procedure not useful for numerical factorization of large matrices?

Let

A=[561454452851218],b=[1110]A=\left[\begin{array}{rrr} 5 & 6 & -14 \\ 5 & 4 & 4 \\ -5 & 2 & -8 \\ 5 & 12 & -18 \end{array}\right], \quad b=\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 0 \end{array}\right]

Using the Gram-Schmidt procedure find a QR decomposition of A. Hence solve the least squares problem giving both xx^{*} and Axb\left\|\mathrm{A} x^{*}-b\right\|.

Typos? Please submit corrections to this page on GitHub.