Paper 2, Section II, G

Analysis II | Part IB, 2015

Let E,FE, F be normed spaces with norms E,F\|\cdot\|_{E},\|\cdot\|_{F}. Show that for a map f:EFf: E \rightarrow F and aEa \in E, the following two statements are equivalent:

(i) For every given ε>0\varepsilon>0 there exists δ>0\delta>0 such that f(x)f(a)F<ε\|f(x)-f(a)\|_{F}<\varepsilon whenever xaE<δ\|x-a\|_{E}<\delta

(ii) f(xn)f(a)f\left(x_{n}\right) \rightarrow f(a) for each sequence xnax_{n} \rightarrow a.

We say that ff is continuous at aa if (i), or equivalently (ii), holds.

Let now (E,E)\left(E,\|\cdot\|_{E}\right) be a normed space. Let AEA \subset E be a non-empty closed subset and define d(x,A)=inf{xaE:aA}d(x, A)=\inf \left\{\|x-a\|_{E}: a \in A\right\}. Show that

d(x,A)d(y,A)xyE for all x,yE.|d(x, A)-d(y, A)| \leqslant\|x-y\|_{E} \text { for all } x, y \in E .

In the case when E=RnE=\mathbb{R}^{n} with the standard Euclidean norm, show that there exists aAa \in A such that d(x,A)=xad(x, A)=\|x-a\|.

Let A,BA, B be two disjoint closed sets in Rn\mathbb{R}^{n}. Must there exist disjoint open sets U,VU, V such that AUA \subset U and BVB \subset V ? Must there exist aAa \in A and bBb \in B such that d(a,b)d(x,y)d(a, b) \leqslant d(x, y) for all xAx \in A and yBy \in B ? For each answer, give a proof or counterexample as appropriate.

Typos? Please submit corrections to this page on GitHub.