Paper 2, Section II, C

Quantum Mechanics | Part IB, 2012

Consider a quantum mechanical particle in a one-dimensional potential V(x)V(x), for which V(x)=V(x)V(x)=V(-x). Prove that when the energy eigenvalue EE is non-degenerate, the energy eigenfunction χ(x)\chi(x) has definite parity.

Now assume the particle is in the double potential well

V(x)={U,0xl10,l1<xl2,l2<xV(x)= \begin{cases}U, & 0 \leqslant|x| \leqslant l_{1} \\ 0, & l_{1}<|x| \leqslant l_{2} \\ \infty, & l_{2}<|x|\end{cases}

where 0<l1<l20<l_{1}<l_{2} and 0<E<U0<E<U (U being large and positive). Obtain general expressions for the even parity energy eigenfunctions χ+(x)\chi^{+}(x) in terms of trigonometric and hyperbolic functions. Show that

tan[k(l2l1)]=kκcoth(κl1)-\tan \left[k\left(l_{2}-l_{1}\right)\right]=\frac{k}{\kappa} \operatorname{coth}\left(\kappa l_{1}\right)

where k2=2mE2k^{2}=\frac{2 m E}{\hbar^{2}} and κ2=2m(UE)2\kappa^{2}=\frac{2 m(U-E)}{\hbar^{2}}.

Typos? Please submit corrections to this page on GitHub.