Paper 3, Section II, D

Methods | Part IB, 2012

Consider Legendre's equation

(1x2)y2xy+λy=0.\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0 .

Show that if λ=n(n+1)\lambda=n(n+1), with nn a non-negative integer, this equation has a solution y=Pn(x)y=P_{n}(x), a polynomial of degree nn. Find P0,P1P_{0}, P_{1} and P2P_{2} explicitly, subject to the condition Pn(1)=1P_{n}(1)=1.

The general solution of Laplace's equation 2ψ=0\nabla^{2} \psi=0 in spherical polar coordinates, in the axisymmetric case, has the form

ψ(r,θ)=n=0(Anrn+Bnr(n+1))Pn(cosθ)\psi(r, \theta)=\sum_{n=0}^{\infty}\left(A_{n} r^{n}+B_{n} r^{-(n+1)}\right) P_{n}(\cos \theta)

Hence, find the solution of Laplace's equation in the region arba \leqslant r \leqslant b satisfying the boundary conditions

{ψ(r,θ)=1,r=aψ(r,θ)=3cos2θ,r=b\begin{cases}\psi(r, \theta)=1, & r=a \\ \psi(r, \theta)=3 \cos ^{2} \theta, & r=b\end{cases}

Typos? Please submit corrections to this page on GitHub.