Paper 3, Section II, G
For each of the following assertions, provide either a proof or a counterexample as appropriate:
(i) The ring is a field.
(ii) The ring is a field.
(iii) If is a finite field, the ring contains irreducible polynomials of arbitrarily large degree.
(iv) If is the ring of continuous real-valued functions on the interval , and the non-zero elements satisfy and , then there is some unit with .
Typos? Please submit corrections to this page on GitHub.