Paper 2, Section II, G
Let be a closed surface, equipped with a triangulation. Define the Euler characteristic of . How does depend on the triangulation?
Let and denote the number of vertices, edges and faces of the triangulation. Show that .
Suppose now the triangulation is tidy, meaning that it has the property that no two vertices are joined by more than one edge. Deduce that satisfies
Hence compute the minimal number of vertices of a tidy triangulation of the real projective plane. [Hint: it may be helpful to consider the icosahedron as a triangulation of the sphere
Typos? Please submit corrections to this page on GitHub.