Paper 1, Section II, B

Quantum Mechanics | Part IB, 2009

A particle of mass mm moves in one dimension in a potential V(x)V(x) which satisfies V(x)=V(x)V(x)=V(-x). Show that the eigenstates of the Hamiltonian HH can be chosen so that they are also eigenstates of the parity operator PP. For eigenstates with odd parity ψodd (x)\psi^{\text {odd }}(x), show that ψodd(0)=0\psi^{o d d}(0)=0.

A potential V(x)V(x) is given by

V(x)={κδ(x)x<ax>aV(x)= \begin{cases}\kappa \delta(x) & |x|<a \\ \infty & |x|>a\end{cases}

State the boundary conditions satisfied by ψ(x)\psi(x) at x=a|x|=a, and show also that

22mlimϵ0[dψdxϵdψdxϵ]=κψ(0)\frac{\hbar^{2}}{2 m} \lim _{\epsilon \rightarrow 0}\left[\left.\frac{d \psi}{d x}\right|_{\epsilon}-\left.\frac{d \psi}{d x}\right|_{-\epsilon}\right]=\kappa \psi(0)

Let the energy eigenstates of even parity be given by

ψeven (x)={Acosλx+Bsinλxa<x<0AcosλxBsinλx0<x<a0 otherwise \psi^{\text {even }}(x)=\left\{\begin{array}{lc} A \cos \lambda x+B \sin \lambda x & -a<x<0 \\ A \cos \lambda x-B \sin \lambda x & 0<x<a \\ 0 & \text { otherwise } \end{array}\right.

Verify that ψeven (x)\psi^{\text {even }}(x) satisfies

Pψeven (x)=ψeven (x)P \psi^{\text {even }}(x)=\psi^{\text {even }}(x)

By demanding that ψeven(x)\psi^{e v e n}(x) satisfy the relevant boundary conditions show that

tanλa=2mλκ\tan \lambda a=-\frac{\hbar^{2}}{m} \frac{\lambda}{\kappa}

For κ>0\kappa>0 show that the energy eigenvalues Eneven ,n=0,1,2,E_{n}^{\text {even }}, n=0,1,2, \ldots, with Eneven <En+1even E_{n}^{\text {even }}<E_{n+1}^{\text {even }}, satisfy

ηn=Eneven12m[(2n+1)π2a]2>0\eta_{n}=E_{n}^{e v e n}-\frac{1}{2 m}\left[\frac{(2 n+1) \hbar \pi}{2 a}\right]^{2}>0

Show also that

limnηn=0,\lim _{n \rightarrow \infty} \eta_{n}=0,

and give a physical explanation of this result.

Show that the energy eigenstates with odd parity and their energy eigenvalues do not depend on κ\kappa.

Typos? Please submit corrections to this page on GitHub.