2.II.20H

Markov Chains | Part IB, 2008

A Markov chain with state-space I=Z+I=\mathbb{Z}^{+}has non-zero transition probabilities p00=q0p_{00}=q_{0} and

pi,i+1=pi,pi+1,i=qi+1(iI).p_{i, i+1}=p_{i}, \quad p_{i+1, i}=q_{i+1} \quad(i \in I) .

Prove that this chain is recurrent if and only if

n1r=1nqrpr=\sum_{n \geqslant 1} \prod_{r=1}^{n} \frac{q_{r}}{p_{r}}=\infty

Prove that this chain is positive-recurrent if and only if

n1r=1npr1qr<\sum_{n \geqslant 1} \prod_{r=1}^{n} \frac{p_{r-1}}{q_{r}}<\infty

Typos? Please submit corrections to this page on GitHub.