1.I.8H

Optimization | Part IB, 2008

State the Lagrangian Sufficiency Theorem for the maximization over xx of f(x)f(x) subject to the constraint g(x)=bg(x)=b.

For each p>0p>0, solve

maxi=1dxip subject to i=1dxi=1,xi0.\max \sum_{i=1}^{d} x_{i}^{p} \quad \text { subject to } \sum_{i=1}^{d} x_{i}=1, \quad x_{i} \geqslant 0 .

Typos? Please submit corrections to this page on GitHub.