Show that the Chebyshev polynomials, Tn(x)=cos(ncos−1x),n=0,1,2,… obey the orthogonality relation
∫−111−x2Tn(x)Tm(x)dx=2πδn,m(1+δn,0)
State briefly how an optimal choice of the parameters ak,xk,k=1,2…n is made in the Gaussian quadrature formula
∫−111−x2f(x)dx∼k=1∑nakf(xk)
Find these parameters for the case n=3.