3.II.17B

Electromagnetism | Part IB, 2008

(i) From Maxwell's equations in vacuum,

E=0×E=BtB=0×B=μ0ϵ0Et\begin{array}{ll} \nabla \cdot \mathbf{E}=0 & \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B}=0 & \nabla \times \mathbf{B}=\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \end{array}

obtain the wave equation for the electric field E. [You may find the following identity useful: ×(×A)=(A)2A.]\left.\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A} .\right]

(ii) If the electric and magnetic fields of a monochromatic plane wave in vacuum are

E(z,t)=E0ei(kzωt) and B(z,t)=B0ei(kzωt)\mathbf{E}(z, t)=\mathbf{E}_{0} \mathrm{e}^{i(k z-\omega t)} \text { and } \mathbf{B}(z, t)=\mathbf{B}_{0} \mathrm{e}^{i(k z-\omega t)}

show that the corresponding electromagnetic waves are transverse (that is, both fields have no component in the direction of propagation).

(iii) Use Faraday's law for these fields to show that

B0=kω(e^z×E0)\mathbf{B}_{0}=\frac{k}{\omega}\left(\hat{\mathbf{e}}_{z} \times \mathbf{E}_{0}\right)

(iv) Explain with symmetry arguments how these results generalise to

E(r,t)=E0ei(krωt)n^ and B(r,t)=1cE0ei(krωt)(k^×n^)\mathbf{E}(\mathbf{r}, t)=E_{0} \mathrm{e}^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \hat{\mathbf{n}} \quad \text { and } \quad \mathbf{B}(\mathbf{r}, t)=\frac{1}{c} E_{0} \mathrm{e}^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}(\hat{\mathbf{k}} \times \hat{\mathbf{n}})

where n^\hat{\mathbf{n}} is the polarisation vector, i.e., the unit vector perpendicular to the direction of motion and along the direction of the electric field, and k^\hat{\mathbf{k}} is the unit vector in the direction of propagation of the wave.

(v) Using Maxwell's equations in vacuum prove that:

A(1/μ0)(E×B)dA=tV(ϵ0E22+B22μ0)dV\oint_{\mathcal{A}}\left(1 / \mu_{0}\right)(\mathbf{E} \times \mathbf{B}) \cdot d \mathcal{A}=-\frac{\partial}{\partial t} \int_{\mathcal{V}}\left(\frac{\epsilon_{0} E^{2}}{2}+\frac{B^{2}}{2 \mu_{0}}\right) d V

where V\mathcal{V} is the closed volume and A\mathcal{A} is the bounding surface. Comment on the differing time dependencies of the left-hand-side of (1) for the case of (a) linearly-polarized and (b) circularly-polarized monochromatic plane waves.

Typos? Please submit corrections to this page on GitHub.