3.I.6D

Methods | Part IB, 2008

Let L\mathcal{L} be the operator

Ly=d2ydx2k2y\mathcal{L} y=\frac{d^{2} y}{d x^{2}}-k^{2} y

on functions y(x)y(x) satisfying limxy(x)=0\lim _{x \rightarrow-\infty} \quad y(x)=0 and limxy(x)=0\lim _{x \rightarrow \infty} y(x)=0.

Given that the Green's function G(x;ξ)G(x ; \xi) for L\mathcal{L} satisfies

LG=δ(xξ)\mathcal{L} G=\delta(x-\xi)

show that a solution of

Ly=S(x)\mathcal{L} y=S(x)

for a given function S(x)S(x), is given by

y(x)=G(x;ξ)S(ξ)dξy(x)=\int_{-\infty}^{\infty} G(x ; \xi) S(\xi) d \xi

Indicate why this solution is unique.

Show further that the Green's function is given by

G(x;ξ)=12kexp(kxξ)G(x ; \xi)=-\frac{1}{2|k|} \exp (-|k||x-\xi|)

Typos? Please submit corrections to this page on GitHub.