1.II.13CComplex Analysis or Complex Methods | Part IB, 2008By a suitable choice of contour show the following:(a)∫0∞x1/n1+x2dx=π2cos(π/2n)\int_{0}^{\infty} \frac{x^{1 / n}}{1+x^{2}} d x=\frac{\pi}{2 \cos (\pi / 2 n)}∫0∞1+x2x1/ndx=2cos(π/2n)πwhere n>1n>1n>1,(b)∫0∞x1/2logx1+x2dx=π222\int_{0}^{\infty} \frac{x^{1 / 2} \log x}{1+x^{2}} d x=\frac{\pi^{2}}{2 \sqrt{2}}∫0∞1+x2x1/2logxdx=22π2Typos? Please submit corrections to this page on GitHub.