1.II.12F

Metric and Topological Spaces | Part IB, 2008

Write down the definition of a topology on a set XX.

For each of the following families T\mathcal{T} of subsets of Z\mathbb{Z}, determine whether T\mathcal{T} is a topology on Z\mathbb{Z}. In the cases where the answer is 'yes', determine also whether (Z,T)(\mathbb{Z}, \mathcal{T}) is a Hausdorff space and whether it is compact.

(a) T={UZ\mathcal{T}=\{U \subseteq \mathbb{Z} : either UU is finite or 0U}0 \in U\}.

(b) T={UZ\mathcal{T}=\{U \subseteq \mathbb{Z} : either Z\U\mathbb{Z} \backslash U is finite or 0U}0 \notin U\}.

(c) T={UZ\mathcal{T}=\{U \subseteq \mathbb{Z} : there exists k>0k>0 such that, for all n,nUn+kU}n, n \in U \Leftrightarrow n+k \in U\}.

(d) T={UZ\mathcal{T}=\{U \subseteq \mathbb{Z} : for all nUn \in U, there exists k>0k>0 such that {n+km:mZ}U}\{n+k m: m \in \mathbb{Z}\} \subseteq U\}.

Typos? Please submit corrections to this page on GitHub.