4.II.13F

Analysis II | Part IB, 2008

Explain what it means for two norms on a real vector space to be Lipschitz equivalent. Show that if two norms are Lipschitz equivalent, then one is complete if and only if the other is.

Let \|-\| be an arbitrary norm on the finite-dimensional space Rn\mathbb{R}^{n}, and let 2\|-\|_{2} denote the standard (Euclidean) norm. Show that for every xRn\mathbf{x} \in \mathbb{R}^{n} with x2=1\|\mathbf{x}\|_{2}=1, we have

xe1+e2++en\|\mathbf{x}\| \leqslant\left\|\mathbf{e}_{1}\right\|+\left\|\mathbf{e}_{2}\right\|+\cdots+\left\|\mathbf{e}_{n}\right\|

where (e1,e2,,en)\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right) is the standard basis for Rn\mathbb{R}^{n}, and deduce that the function \|-\| is continuous with respect to 2\|-\|_{2}. Hence show that there exists a constant m>0m>0 such that xm\|\mathbf{x}\| \geqslant m for all x\mathbf{x} with x2=1\|\mathbf{x}\|_{2}=1, and deduce that \|-\| and 2\|-\|_{2} are Lipschitz equivalent.

[You may assume the Bolzano-Weierstrass Theorem.]

Typos? Please submit corrections to this page on GitHub.