4.I.3F

Analysis II | Part IB, 2008

Let XX be the vector space of all continuous real-valued functions on the unit interval [0,1][0,1]. Show that the functions

f1=01f(t)dt and f=sup{f(t):0t1}\|f\|_{1}=\int_{0}^{1}|f(t)| d t \quad \text { and } \quad\|f\|_{\infty}=\sup \{|f(t)|: 0 \leqslant t \leqslant 1\}

both define norms on XX.

Consider the sequence (fn)\left(f_{n}\right) defined by fn(t)=ntn(1t)f_{n}(t)=n t^{n}(1-t). Does (fn)\left(f_{n}\right) converge in the norm 1\|-\|_{1} ? Does it converge in the norm \|-\|_{\infty} ? Justify your answers.

Typos? Please submit corrections to this page on GitHub.