3.II.16 F3 . \mathrm{II} . 16 \mathrm{~F} \quad

Analysis II | Part IB, 2004

State and prove the contraction mapping theorem.

Let aa be a positive real number, and take X=[a2,)X=\left[\sqrt{\frac{a}{2}}, \infty\right). Prove that the function

f(x)=12(x+ax)f(x)=\frac{1}{2}\left(x+\frac{a}{x}\right)

is a contraction from XX to XX. Find the unique fixed point of ff.

Typos? Please submit corrections to this page on GitHub.