3.II.22A

Numerical Analysis | Part IB, 2004

Given fC3[0,1]f \in C^{3}[0,1], we approximate f(13)f^{\prime}\left(\frac{1}{3}\right) by the linear combination

T[f]=53f(0)+43f(12)+13f(1)\mathcal{T}[f]=-\frac{5}{3} f(0)+\frac{4}{3} f\left(\frac{1}{2}\right)+\frac{1}{3} f(1)

By finding the Peano kernel, determine the least constant cc such that

T[f]f(13)cf.\left|\mathcal{T}[f]-f^{\prime}\left(\frac{1}{3}\right)\right| \leq c\left\|f^{\prime \prime \prime}\right\|_{\infty} .

Typos? Please submit corrections to this page on GitHub.