3.I.6DMethods | Part IB, 2004LetS[x]=∫0T12(x˙2−ω2x2)dt,x(0)=a,x(T)=b.S[x]=\int_{0}^{T} \frac{1}{2}\left(\dot{x}^{2}-\omega^{2} x^{2}\right) \mathrm{d} t, \quad x(0)=a, \quad x(T)=b .S[x]=∫0T21(x˙2−ω2x2)dt,x(0)=a,x(T)=b.For any variation δx(t)\delta x(t)δx(t) with δx(0)=δx(T)=0\delta x(0)=\delta x(T)=0δx(0)=δx(T)=0, show that δS=0\delta S=0δS=0 when x=xcx=x_{c}x=xc withxc(t)=1sinωT[asinω(T−t)+bsinωt].x_{c}(t)=\frac{1}{\sin \omega T}[a \sin \omega(T-t)+b \sin \omega t] .xc(t)=sinωT1[asinω(T−t)+bsinωt].By using integration by parts, show thatS[xc]=[12xcx˙c]0T=ω2sinωT[(a2+b2)cosωT−2ab]S\left[x_{c}\right]=\left[\frac{1}{2} x_{c} \dot{x}_{c}\right]_{0}^{T}=\frac{\omega}{2 \sin \omega T}\left[\left(a^{2}+b^{2}\right) \cos \omega T-2 a b\right]S[xc]=[21xcx˙c]0T=2sinωTω[(a2+b2)cosωT−2ab]Typos? Please submit corrections to this page on GitHub.