1.II.12H

Statistics | Part IB, 2002

Suppose we ask 50 men and 150 women whether they are early risers, late risers, or risers with no preference. The data are given in the following table.

 Early risers  Late risers  No preference  Totals  Men 17221150 Women 437829150 Totals 6010040200\begin{array}{lcccc} & \text { Early risers } & \text { Late risers } & \text { No preference } & \text { Totals } \\ \text { Men } & 17 & 22 & 11 & 50 \\ \text { Women } & 43 & 78 & 29 & 150 \\ \text { Totals } & 60 & 100 & 40 & 200\end{array}

Derive carefully a (generalized) likelihood ratio test of independence of classification. What is the result of applying this test at the 0.010.01 level?

[ Distribution χ12χ22χ32χ52χ6299% percentile 6.639.2111.3415.0916.81]\left[\begin{array}{lccccc}\text { Distribution } & \chi_{1}^{2} & \chi_{2}^{2} & \chi_{3}^{2} & \chi_{5}^{2} & \chi_{6}^{2} \\ 99 \% \text { percentile } & 6.63 & 9.21 & 11.34 & 15.09 & 16.81\end{array}\right]

Typos? Please submit corrections to this page on GitHub.