3.II.16B
(a) Consider a system of linear equations with a non-singular square matrix . To determine its solution we apply the iterative method
Here , while the matrix is such that implies . The initial vector is arbitrary. Prove that, if the matrix possesses linearly independent eigenvectors whose corresponding eigenvalues satisfy , then the method converges for any choice of , i.e. as .
(b) Describe the Jacobi iteration method for solving . Show directly from the definition of the method that, if the matrix is strictly diagonally dominant by rows, i.e.
then the method converges.
Typos? Please submit corrections to this page on GitHub.