A function y(x) is chosen to make the integral
I=∫abf(x,y,y′,y′′)dx
stationary, subject to given values of y(a),y′(a),y(b) and y′(b). Derive an analogue of the Euler-Lagrange equation for y(x).
Solve this equation for the case where
f=x4y′′2+4y2y′
in the interval [0,1] and
x2y(x)→0,xy(x)→1
as x→0, whilst
y(1)=2,y′(1)=0