4.II.10E
(a) Let be a finite-dimensional real vector space, and let and be two norms on . Show that a function is differentiable at a point in with respect to if and only if it is differentiable at with respect to , and that if this is so then the derivative of is independent of the norm used. [You may assume that all norms on a finite-dimensional vector space are equivalent.]
(b) Let and be finite-dimensional normed real vector spaces with having norm , and let be a continuous bilinear mapping. Show that is differentiable at any point in , and that [You may assume that is a norm on , and that is compact.]
Typos? Please submit corrections to this page on GitHub.