3.II.14E
Show that every isometry of Euclidean space is a composition of reflections in planes
What is the smallest integer such that every isometry of with can be expressed as the composition of at most reflections? Give an example of an isometry that needs this number of reflections and justify your answer.
Describe (geometrically) all twelve orientation-reversing isometries of a regular tetrahedron.
Typos? Please submit corrections to this page on GitHub.