Paper 3, Section II, 22I

Analysis of Functions | Part II, 2020

Let XX be a Banach space.

(a) Define the dual space XX^{\prime}, giving an expression for ΛX\|\Lambda\|_{X^{\prime}} for ΛX\Lambda \in X^{\prime}. If Y=Lp(Rn)Y=L^{p}\left(\mathbb{R}^{n}\right) for some 1p<1 \leqslant p<\infty, identify YY^{\prime} giving an expression for a general element of YY^{\prime}. [You need not prove your assertion.]

(b) For a sequence (Λi)i=1\left(\Lambda_{i}\right)_{i=1}^{\infty} with ΛiX\Lambda_{i} \in X^{\prime}, what is meant by: (i) ΛiΛ\Lambda_{i} \rightarrow \Lambda, (ii) ΛiΛ\Lambda_{i} \rightarrow \Lambda (iii) ΛiΛ\Lambda_{i} \stackrel{*}{\rightarrow} \Lambda ? Show that (i) \Longrightarrow (ii) \Longrightarrow (iii). Find a sequence (fi)i=1\left(f_{i}\right)_{i=1}^{\infty} with fif_{i} \in L(R)=(L1(R))L^{\infty}(\mathbb{R})=\left(L^{1}(\mathbb{R})\right)^{\prime} such that, for some f,gL(Rn)f, g \in L^{\infty}\left(\mathbb{R}^{n}\right) :

fif,fi2g,gf2.f_{i} \stackrel{*}{\rightarrow} f, \quad f_{i}^{2} \stackrel{*}{\rightarrow} g, \quad g \neq f^{2} .

(c) For fCc0(Rn)f \in C_{c}^{0}\left(\mathbb{R}^{n}\right), let Λ:Cc0(Rn)C\Lambda: C_{c}^{0}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C} be the map Λf=f(0)\Lambda f=f(0). Show that Λ\Lambda may be extended to a continuous linear map Λ~:L(Rn)C\tilde{\Lambda}: L^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}, and deduce that (L(Rn))L1(Rn)\left(L^{\infty}\left(\mathbb{R}^{n}\right)\right)^{\prime} \neq L^{1}\left(\mathbb{R}^{n}\right). For which 1p1 \leqslant p \leqslant \infty is Lp(Rn)L^{p}\left(\mathbb{R}^{n}\right) reflexive? [You may use without proof the Hahn-Banach theorem].

Typos? Please submit corrections to this page on GitHub.