Paper 2, Section II, 18G
(a) Let be a field and let be the splitting field of a polynomial . Let be a primitive root of unity. Show that is a subgroup of .
(b) Suppose that is a Galois extension of fields with cyclic Galois group generated by an element of order , and that contains a primitive root of unity . Show that an eigenvector for on with eigenvalue generates , that is, . Show that .
(c) Let be a finite group. Define what it means for to be solvable.
Determine whether
(i) (ii)
are solvable.
(d) Let be the field of fractions of the polynomial ring . Let . Show that is not solvable by radicals. [You may use results from the course provided that you state them clearly.]
Typos? Please submit corrections to this page on GitHub.