Paper 2, Section II, E
A semi-infinite elastic string is initially at rest on the -axis with . The transverse displacement of the string, , is governed by the partial differential equation
where is a positive real constant. For the string is subject to the boundary conditions and as .
(i) Show that the Laplace transform of takes the form
(ii) For , with , find and hence write in terms of and . Obtain by performing the inverse Laplace transform using contour integration. Provide a physical interpretation of the result.
Typos? Please submit corrections to this page on GitHub.