Paper 2, Section II, F

Algebraic Topology | Part II, 2020

(a) Let f:XYf: X \rightarrow Y be a map of spaces. We define the mapping cylinder MfM_{f} of ff to be the space

(([0,1]×X)Y)/(([0,1] \times X) \sqcup Y) / \sim

with (0,x)f(x)(0, x) \sim f(x). Show carefully that the canonical inclusion YMfY \hookrightarrow M_{f} is a homotopy equivalence.

(b) Using the Seifert-van Kampen theorem, show that if XX is path-connected and α:S1X\alpha: S^{1} \rightarrow X is a map, and x0=α(θ0)x_{0}=\alpha\left(\theta_{0}\right) for some point θ0S1\theta_{0} \in S^{1}, then

π1(XαD2,x0)π1(X,x0)/[α]\pi_{1}\left(X \cup_{\alpha} D^{2}, x_{0}\right) \cong \pi_{1}\left(X, x_{0}\right) /\langle\langle[\alpha]\rangle\rangle

Use this fact to construct a connected space XX with

π1(X)a,ba3=b7\pi_{1}(X) \cong\left\langle a, b \mid a^{3}=b^{7}\right\rangle

(c) Using a covering space of S1S1S^{1} \vee S^{1}, give explicit generators of a subgroup of F2F_{2} isomorphic to F3F_{3}. Here FnF_{n} denotes the free group on nn generators.

Typos? Please submit corrections to this page on GitHub.