Paper 1, Section I, 2H\mathbf{2 H}

Topics in Analysis | Part II, 2020

Let γ:[0,1]C\gamma:[0,1] \rightarrow \mathbb{C} be a continuous map never taking the value 0 and satisfying γ(0)=γ(1)\gamma(0)=\gamma(1). Define the degree (or winding number) w(γ;0)w(\gamma ; 0) of γ\gamma about 0 . Prove the following.

(i) If δ:[0,1]C\{0}\delta:[0,1] \rightarrow \mathbb{C} \backslash\{0\} is a continuous map satisfying δ(0)=δ(1)\delta(0)=\delta(1), then the winding number of the product γδ\gamma \delta is given by w(γδ;0)=w(γ;0)+w(δ;0)w(\gamma \delta ; 0)=w(\gamma ; 0)+w(\delta ; 0).

(ii) If σ:[0,1]C\sigma:[0,1] \rightarrow \mathbb{C} is continuous, σ(0)=σ(1)\sigma(0)=\sigma(1) and σ(t)<γ(t)|\sigma(t)|<|\gamma(t)| for each 0t10 \leqslant t \leqslant 1, then w(γ+σ;0)=w(γ;0)w(\gamma+\sigma ; 0)=w(\gamma ; 0).

(iii) Let D={zC:z1}D=\{z \in \mathbb{C}:|z| \leqslant 1\} and let f:DCf: D \rightarrow \mathbb{C} be a continuous function with f(z)0f(z) \neq 0 whenever z=1|z|=1. Define α:[0,1]C\alpha:[0,1] \rightarrow \mathbb{C} by α(t)=f(e2πit)\alpha(t)=f\left(e^{2 \pi i t}\right). Then if w(α;0)0w(\alpha ; 0) \neq 0, there must exist some zDz \in D, such that f(z)=0f(z)=0. [It may help to define F(s,t):=f(se2πit)F(s, t):=f\left(s e^{2 \pi i t}\right). Homotopy invariance of the winding number may be assumed.]

Typos? Please submit corrections to this page on GitHub.