Paper 1, Section II, 27K

Probability and Measure | Part II, 2020

(a) Let (X,F,ν)(X, \mathcal{F}, \nu) be a probability space. State the definition of the space L2(X,F,ν)\mathbb{L}^{2}(X, \mathcal{F}, \nu). Show that it is a Hilbert space.

(b) Give an example of two real random variables Z1,Z2Z_{1}, Z_{2} that are not independent and yet have the same law.

(c) Let Z1,,ZnZ_{1}, \ldots, Z_{n} be nn random variables distributed uniformly on [0,1][0,1]. Let λ\lambda be the Lebesgue measure on the interval [0,1][0,1], and let B\mathcal{B} be the Borel σ\sigma-algebra. Consider the expression

D(f):=Var[1n(f(Z1)++f(Zn))[0,1]fdλ]D(f):=\operatorname{Var}\left[\frac{1}{n}\left(f\left(Z_{1}\right)+\ldots+f\left(Z_{n}\right)\right)-\int_{[0,1]} f d \lambda\right]

where Var denotes the variance and fL2([0,1],B,λ)f \in \mathbb{L}^{2}([0,1], \mathcal{B}, \lambda).

Assume that Z1,,ZnZ_{1}, \ldots, Z_{n} are pairwise independent. Compute D(f)D(f) in terms of the variance Var(f):=Var(f(Z1))\operatorname{Var}(f):=\operatorname{Var}\left(f\left(Z_{1}\right)\right).

(d) Now we no longer assume that Z1,,ZnZ_{1}, \ldots, Z_{n} are pairwise independent. Show that

supD(f)1n,\sup D(f) \geqslant \frac{1}{n},

where the supremum ranges over functions fL2([0,1],B,λ)f \in \mathbb{L}^{2}([0,1], \mathcal{B}, \lambda) such that f2=1\|f\|_{2}=1 and [0,1]fdλ=0\int_{[0,1]} f d \lambda=0.

[Hint: you may wish to compute D(fp,q)D\left(f_{p, q}\right) for the family of functions fp,q=k2(1Ip1Iq)f_{p, q}=\sqrt{\frac{k}{2}}\left(1_{I_{p}}-1_{I_{q}}\right) where 1p,qk,Ij=[jk,j+1k)1 \leqslant p, q \leqslant k, I_{j}=\left[\frac{j}{k}, \frac{j+1}{k}\right) and 1A1_{A} denotes the indicator function of the subset A.]\left.A .\right]

Typos? Please submit corrections to this page on GitHub.