Paper 1, Section II, A

Principles of Quantum Mechanics | Part II, 2020

Let A=(mωX+iP)/2mωA=(m \omega X+i P) / \sqrt{2 m \hbar \omega} be the lowering operator of a one dimensional quantum harmonic oscillator of mass mm and frequency ω\omega, and let 0|0\rangle be the ground state defined by A0=0A|0\rangle=0.

a) Evaluate the commutator [A,A]\left[A, A^{\dagger}\right].

b) For γR\gamma \in \mathbb{R}, let S(γ)S(\gamma) be the unitary operator S(γ)=exp(γ2(AAAA))S(\gamma)=\exp \left(-\frac{\gamma}{2}\left(A^{\dagger} A^{\dagger}-A A\right)\right) and define A(γ)=S(γ)AS(γ)A(\gamma)=S^{\dagger}(\gamma) A S(\gamma). By differentiating with respect to γ\gamma or otherwise, show that

A(γ)=AcoshγAsinhγA(\gamma)=A \cosh \gamma-A^{\dagger} \sinh \gamma

c) The ground state of the harmonic oscillator saturates the uncertainty relation ΔXΔP/2\Delta X \Delta P \geqslant \hbar / 2. Compute ΔXΔP\Delta X \Delta P when the oscillator is in the state γ=S(γ)0|\gamma\rangle=S(\gamma)|0\rangle.

Typos? Please submit corrections to this page on GitHub.