Paper 2, Section I, 1H1 \mathbf{H}

Number Theory | Part II, 2020

Let θR\theta \in \mathbb{R}.

For each integer n1n \geqslant-1, define the convergents pn/qnp_{n} / q_{n} of the continued fraction expansion of θ\theta. Show that for all n0,pnqn1pn1qn=(1)n1n \geqslant 0, p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1}. Deduce that if qNq \in \mathbb{N} and pZp \in \mathbb{Z} satisfy

θpq<θpnqn\left|\theta-\frac{p}{q}\right|<\left|\theta-\frac{p_{n}}{q_{n}}\right|

then q>qnq>q_{n}.

Compute the continued fraction expansion of 12\sqrt{12}. Hence or otherwise find a solution in positive integers xx and yy to the equation x212y2=1x^{2}-12 y^{2}=1.

Typos? Please submit corrections to this page on GitHub.