Paper 4, Section II, 23I

Analysis of Functions | Part II, 2020

(a) Define the Sobolev space Hs(Rn)H^{s}\left(\mathbb{R}^{n}\right) for sRs \in \mathbb{R}.

(b) Let kk be a non-negative integer and let s>k+n2s>k+\frac{n}{2}. Show that if uHs(Rn)u \in H^{s}\left(\mathbb{R}^{n}\right) then there exists uCk(Rn)u^{*} \in C^{k}\left(\mathbb{R}^{n}\right) with u=uu=u^{*} almost everywhere.

(c) Show that if fHs(Rn)f \in H^{s}\left(\mathbb{R}^{n}\right) for some sRs \in \mathbb{R}, there exists a unique uHs+4(Rn)u \in H^{s+4}\left(\mathbb{R}^{n}\right) which solves:

ΔΔu+Δu+u=f\Delta \Delta u+\Delta u+u=f

in a distributional sense. Prove that there exists a constant C>0C>0, independent of ff, such that:

uHs+4CfHs\|u\|_{H^{s+4}} \leqslant C\|f\|_{H^{s}}

For which ss will uu be a classical solution?

Typos? Please submit corrections to this page on GitHub.